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The present study investigates the accuracy of well-known turbulence models in simulating the mean velocity,
turbulence, and concentration fields for the cases of constant and variable density, turbulent, low Mach number,
isothermal, confined coaxial streams of different bulk mean velocities, or axisymmetric mixing layers. The
standard k ~ £ eddy viscosity model and an aniseotropic thin shear algebraic stress model (ASM) are employed
for the constant density case. Results for the k ~ £ model are determined to be qualitatively satisfactory and
superior to those for the thin shear ASM, though both show excessive radial diffusion of axial momentum.
Based on these conclusions, the &k ~ £ model, extended for variable density, is used for numerical simulations
of a similar flow where the inner stream gas has a density four times that of the outer stream gas. Simulations
for the velocity using the k£ ~ £ model are again found te be qualitatively accurate. Predictions for the concen-
tration field, however, are in good agreement with the data. The flow fields studied are idealizations of a
particular configuration once proposed for a gas core reactor (GCR) nuclear propulsion engine. Nuclear pro-
pulsion for space travel, once considered in the 1960s and early 1970s, is being reconsidered, especially for

manned interplanetary travel.

Introduction

INCE the goal of sending a manned mission to Mars was

announced in 1989, interest in reconsidering the advan-
tages of nuclear propulsion has increased greatly. A primary
advantage of nuclear propulsion, for example, is the signifi-
cantly reduced time required to make the round trip, mini-
mizing the exposure of the travelers to cosmic radiation. Nu-
clear propulsion was once considered for use with space vehicles
in the 1960s and early 1970s. One of the high-risk, high-
potential propulsion concepts for space travel investigated
then was the gas core reactor (GCR) nuclear propulsion en-
gine. Operating at temperatures well above the vaporization
temperature of uranium, the gas core reactor was to combine
the dual attractions of theoretically high specific impulse and
high thrust levels.

One of the configurations investigated in earlier times for
the implementation of the gas core engine was the open cycle
coaxial flow design, wherein the light hydrogen propellant
would flow at a high rate around an inner core of slow moving,
fissioning uranium vapor. The heavy uranium core would heat
the hydrogen through convection and radiation heat trans-
port. A number of experimental investigations were pursued
during the 1960s and 1970s to determine and investigate the
critical operating parameters of the coaxial gas core config-
uration. Two of the critical aspects of the design concept are
the hydrodynamic and nuclear kinetic stabilities. The first
issue relates to the question of being able to confine the gas-
eous fuel, minimizing its loss, while the second is concerned
with being able to maintain a stable or at least controllable
nuclear reaction.

One of the early experiments,! undertaken to investigate
turbulent mixing of coaxial streams, examined the mixing of
a slow inner stream with a faster outer stream surrounding
it. Data were taken for various ratios of mean outer free-
stream velocity to mean inner bulk velocity and for homo-

Received Dec. 5, 1991; revision received Dec. 7, 1992; accepted
for publication Jan. 25, 1993. This paper is declared a work of the
U.S. Government and is not subject to copyright protection in the
United States.

*Senior Engineering Specialist, Idaho National Engineering Lab-
oratory.

588

geneous and heterogeneous combinations of fluids. Because
the boundary layer of the outer stream had time to transition
to turbulence and because some of the inner streams were
also turbulent, the coaxial flow can be described as an axi-
symmetric turbulent mixing layer.

The objectives of the present study are 1) to numerically
simulate one of the homogeneous turbulent axisymmetric
mixing layer flows of Zawacki and Weinstein® using two tur-
bulence models to determine the suitability of each for this
flow, and 2) to apply either of the two models that behaves
satisfactorily for the homogeneous case to a similar hetero-
geneous case. The two turbulence models are the standard
k ~ £ model and an anisotropic thin shear algebraic stress
model (ASM). Figure 1 provides a schematic diagram of the
flow geometry and conditions for the constant and variable
density axisymmetric mixing layers.

An early numerical simulation of the data of Zawacki and
Weinstein® for the same case investigated here was reported
by Zelazny et al.? They derived a highly empirical, eddy vis-
cosity model for the turbulent shear stress based on data for
axisymmetric jets, wakes, and coflowing streams. They ini-
tiated their calculations downstream of the initial point of

19.05 mm 0.D. tube,
0.343 mm thick walls,
1.22 m development length

filtered intake

\

Air or Freon 12 \
U, = Uy /3.4

gi,air —
U,
| fully developed pipe
!
i

=7, 736

Air

7

20.3 cm

i,freon
flow at tube exit
square

Fig. 1 Schematic diagram of the geometry and boundary conditions
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mixing where the data are complete enough to apply their
modei. Their calculations for two additional downstream sta-
tions show quite good agreement. However, because the tur-
bulence model is so highly empirical, it would seem imprudent
to apply the model to flows much different than the flow on
which it is based.

Several experimental and/or numerical studies have been
made in the past several years documenting coaxial jet flows.
Ribeiro and Whitelaw® report experimental data of coaxial
jets having identical maximum velocities issuing from a pipe
and concentric annulus into unconfined stagnant surround-
ings. They discuss the importance of turbulent diffusion in
the flow development, indicating that it balances the dissi-
pation of turbulent kinetic energy. Hence, the developing flow
is nonequilibrium in terms of the turbulent kinetic energy.
(An equilibrium flow is where production of turbulent kinetic
energy balances dissipation.) They also point out that a full
second-moment turbulence closure would be required to get
all of the turbulence quantities correct, though a simpler model
could be used for engineering calculations where qualitative
features are of primary interest. Habib and Whitelaw* report
experiments and simulations of confined coaxial jets where
the confinement includes an expansion at the initial plane of
mixing (as in a jet engine combustor can). They compare data
using a laser-Doppler anemometer (LDA) with earlier data
taken in the same apparatus using a hot-wire. They found
discrepancies of up to 10% in the mean data and up to 17%
in the rms data. They further decided that the mean data are
too high vs reality, while the rms data are too low, especially
where rms data are greater than 30% of the magnitude of the
mean data. Their calculations, employing the k ~ ¢ turbulence
model, show reasonable agreement downstream of the pri-
mary mixing region, but are inaccurate in the upstream area,
The calculations for their nonswirling case are more accurate
than those for the swirling case. In a later paper, Ribeiro and
Whitelaw® report data for coaxial jet flows having different
maximum velocity ratios. They again emphasize the impor-
tance of turbulent diffusion. They further recommend the use
of a turbulence model like that of Bradshaw et al.¢ which
employs a diffusion parameter based on a velocity character-
istic of the large-scale motion of the turbulent eddies present
in the flow. Such a diffusion term is added to try and capture
the diffusion due to large-scale eddies which significantly con-
tribute to the mixing process.

Wagner et al.” report numerical simulations of the flowfield
of two confined coaxial jets with a sudden expansion (jet

engine combustor). The sudden expansion generates a region -

of recirculating flow outside the jet mixing region. They em-
ploy a two-equation turbulence model with a large-scale dif-
fusion term and compare results with data® and with earlier
calculations using a low Reynolds number k ~ ¢ model.® They
find that the model employing the extra large-scale diffusion
term provides for more diffusion, yielding more accurate re-
sults than does the other model. They attribute this to the
ability of the model to handle countergradient turbulent dif-
fusion which is a result of the large-scale motions. The nature
of the countergradient diffusion is the subject of a related
paper by Brondum and Bennett!® which characterizes the re-
gions of the flow of Ref. 8 where mass transport in the axial
direction is against the gradient of species concentration.
Brondum and Bennett'® are able to show that the region of
countergradient mass transport generally maps onto the re-
gion where large-scale eddies account for much of the mass
transport. Of course, the contributions of radial diffusion to
the overall transport of axial momentum and species are sig-
nificantly larger than those of the axial components.
Sturgess and Syed!! numerically investigate the flowfield of
widely spaced, confined coaxial jets, as are found in a jet
diffusion-flame combustor. They employ the k ~ £ model and
report excellent qualitative results; however, they also report
shortcomings with the turbulence model in regions exhibiting
streamline curvature. In their discussion of the suitability of

the turbulence model, however, Sturgess and Syed seem to
indicate that the kK ~ ¢ model assumes equilibrium between
production and dissipation of turbulent energy. This is only
true in the assignment of the viscosity coefficient (C,) to a
constant value. The standard k ~ ¢ model accounts for the
production, dissipation, convection, and (gradient) diffusion
of turbulent energy.

A number of studies have been performed for the related
flows of planar mixing layers and wakes. The level of tur-
bulence models employed for simulating such flows ranges
from simple mixing length models to sophisticated second-
moment closures. The study of Launder et al.'? compares the
results for a mixing length model and one and two equation
turbulence models for the simulation of a plane mixing layer.
Predictions for the transverse distributions of the mean
streamwise velocity and the turbulent shear stresses are com-
pared with experiments at two streamwise stations. The re-
sults for the &k ~ £ model are found to be very good for the
mean velocity, while the other models show excessive diffu-
sion. However, the k ~ ¢ results for the shear stress, found
to be good for the earlier streamwise station, are off by more
than 100% for the station farther downstream! It is concluded
by Launder et al.'? that the shear stress data are suspect.

The conference report by Rodi*® describes a large number
of turbulence modeling studies presented at the EURO-
MECH Colloquium 180 held in Karlsruhe, Germany, July 4-
6, 1984. Summaries of studies relating to mixing layers and
wakes by Radespiel, Schiestel, and Jones are presented therein.
Radespiel employs a three-equation £ ~ ¢ ~ vy turbulence
model to simulate a plane mixing layer; vy, the intermittency
factor, is modeled with a transport equation similar to those
for k and ¢. Schiestel uses a multiscale ASM where the energy
spectrum is divided into two ranges with equations for tur-
bulence quantities provided for each range. He gives results
for a plane wake. Jones reports computations for a plane
mixing layer with a full second-moment closure. In each of
these three cases, the spreading rates for the mixing layer or
wake are underpredicted, although improvements over results
for the standard k ~ & model are reported for the first two
studies.

Gross similarities exist between the flow studied here and
the wake flow behind a bluff body. A successful study of such
a flow is given by Biringen!* who reports simulations for an
axisymmetric wake flow for a body of revolution using a three-
equation model of turbulence. The three turbulence param-
eters for which transport equations are solved are the tur-
bulent kinetic energy and shear stress, and an integral length
scale. Results for one axial station are presented for the wake
flow. Agreement for the radial distribution of the mean
streamwise velocity is shown to be quite good, although the
distributions for turbulent kinetic energy and shear stress are
less satisfactory.

Further examples of second-moment closures applied to
mixing layers and wakes are provided by Launder et al.'> and
Lewellen et al.’s Both report good results for mean velocities
and Reynolds stresses, although complete agreement is not
achieved. Nallasamy'’ reports k ~ & model predictions for
the complex flow of confined coaxial turbulent jets issuing
into an abrupt pipe expansion where there are recirculation
zones in the corners and the central mixing region. He reports
that the locations, sizes, and shapes of the recirculation zones
along with axial and radial velocities and axial turbulence
intensities are predicted fairly well, although the rate of re-
development of the flow beyond reattachment is not.

It is further reported'® that spreading rates for round jets
are overpredicted, while those for planar wakes are under-
predicted, using the same turbulence model. It therefore seems
prudent to test models for axisymmetric geometry even if they
have been found to work well for planar flows. The present
study examines numerical simulations for constant and vari-
able density coaxial streams (with thick boundary layers at
the beginning of the mixing region).
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The describing equations and closures for the cases of con-
stant and variable density coflowing streams are detailed in
the following two sections.

Describing Equations for Constant Density

Mean Fluid Flow Equations

The Reynolds-averaged continuity and Navier-Stokes equa-
tions for two dimensions are employed for the constant den-
sity, stationary, isothermal, axisymmetric problem of coflow-
ing streams. We decompose the instantaneous velocity and
pressure into simple ensemble mean and fluctuating compo-
nents. Because the flows studied herein are stationary, the
ensemble and time averages (over a suitably long time inter-
val) are equivalent. The ensemble or time mean velocities are
represented by U and V in the x and r directions, respectively.
Corresponding fluctuating quantities are represented by u’
and v'. w' is the circumferential fluctuation. The equations
in cylindrical coordinates are

continuity
=0 M

momentum

ox ror p ox ox ox
3 al
+——r[ <_+6V>_u, ’] )
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ooV VvV 18P 9 au  av —
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The quantities u'?, v'2, w'?, and u'v’ are the kinematic Rey-
nolds stresses. The thermodynamic pressure is ¥ and the ki-
nematic viscosity is represented by v. The Reynolds stresses
must be modeled in order to close the system. The two tur-
bulence models employed for closure for the constant density
case are given in the following section.

Turbulence Models

The first turbulence model used for the constant density
case is the standard k ~ ¢ eddy viscosity model.'®** The
k ~ & model employs the following expressions for the ki-
nematic Reynolds stresses:

—ﬁ=2v,g—U-—gk, —W=2v,§z—zk
X 3 ar 3
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The kinematic turbulent viscosity »,_is modeled as », =
C,k%e, where k = 0.5 (u'? + v'2 + w'?) is the turbulent
kinetic energy and ¢ its rate of dissipation. The turbulence
quantities £ and ¢ are determined from modeled transport
equations given in cylindrical coordinates as
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where the kinematic production of turbulent kinetic energy
P in cylindrical coordinates is
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The modeling coefficients are given the optimized values,
C, =009, 0, =10,0, = 122,C,, = 144, and C,, =
1.92.19 The value employed for o, is different than the widely
used 1.3.%* The present value is often used instead,* as it has
a more theoretical base. The lower value is derived from the
¢ transport equation simplified for flow in the inertial sublayer
near a flat boundary where convection is assumed zero, P/e
= 1, k is assumed constant, ¢ = C27°k'-*/(xy) with the von
Karman constant k = 0.419,% giving o, = «¥[C2%(C,, ~
C.)l = 1.22 .

Inlet values for U, k, ¢, and v, were obtained from numerical
simulations of pipe and annular flows. The wall treatment
used for these precursory simulations was the standard wall
function approach detailed in Launder and Spalding.!® The
inlet conditions for the annular part of the inlet plane were
obtained by matching annular flow computations with the data
point which lies in the annular boundary layer at x/r, = 0
given in Zawacki and Weinstein.! The inlet conditions for the
pipe portion of the flow are fully developed turbulent pipe
flow. For the far radial boundary condition, both free- and
no-slip conditions are used as will be discussed later. The
standard wall functions are used in the coflowing domain at
the outer boundary for the no-slip case. The flow data are
specified as having zero gradient at the outlet of the com-
putational domain. The outlet boundary condition was vali-
dated by doubling the axial computational domain for one
calculation and comparing results using the standard domain;
the plotted results were indistinguishable.

The second turbulence model employed in the present study
is a thin shear form of the ASM of Rodi.?? In the thin shear
version of the ASM, all mean velocity gradients are neglected
except for the radial gradient of the mean streamwise velocity,
which is much greater than any other for this problem. The

model employed by the ASM for the Reynolds stresses is
given as

—— _ k(1 - C) 2 2
WU = e =1+ Py \Lv T 3%F) T 38k (@)

P,;and P are the production tensor for the Reynolds stresses
and the production of k, respectively. For the present thin
shear flow version of the ASM, P is given as

14 —V
P=—-—[u E_"ﬂ' :I (9)

r

The four components of the production tensor that are
required for the ASM are approximated as

— U — U
P12= _UZE’ Pllz —2u'v ;z2p
Py =Py =0 (10)
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Employing these relations along with Eq. (8), the Reynolds
stresses are modeled as
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Transport equations are again required for k and &. The
transport equations used for the thin shear ASM for k and ¢
are
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where P is given by Eq. (9). The model coefficients for the
ASMare C, = 1.8, C, = 0.6,2 C,, = 022, C, = 0.09, C,,
=144,C,, = 1.92,2 and C, = 0.17.%

The inlet conditions used for the ASM computations are
computed from precursory calculations similar to the & ~ &
case, except that the ASM is used. The standard wall cor-
rections for the ASM are employed for these calculations.?
The same boundary conditions are used for the ASM simu-
lations as for the £ ~ ¢ model predictions.

Describing Equations for Variable Density

Mean Fluid Flow Equations

For the variable density case, Favre or mass-weighted av-
eraging is employed for the velocity. We can write

U=U+u (16)
where
U = (pUlp) an

The flat overbar indicates simple time averaging as before.
Note that the time average of u” is not zero as are those for
u', p', etc. Other quantities are subjected to simple time av-
eraging (P, p). The molecular viscosity is assumed to be con-
stant and equal to that for air as the primary momentum and
mass diffusion transports are turbulent. The two species pres-
ent are assumed to be comserved according to the species
continuity equation

species continuity
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where the superscript s refers to species s and D is the tur-

bulent diffusion coefficient. D is computed from the turbulent
Schmidt number taken to be Sc, = v,/D = 0.9. The value 0.9

is that recommended by Launder? for the turbulent Prandtl
number which is analogous to Sc,. The overall mass and mo-
mentum conservation equations are given by
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The ideal gas equation for multiple species is used to compute

the overall density

-[r0F] @

where T is the absolute temperature, R is the universal gas
constant, and W, is the molal mass for species s. The Reynolds
stresses are the quantities pu'?, pv"?, pw"?, and pu"v” which
are based on the fluctuating components of the mass-weighted
velocity. The dynamic viscosity is represented by u. The tur-
bulence model used to model the Reynolds stresses for the
variable density case is given in the following section.

Turbulence Model

The turbulence model used for the variable density case is
the k£ ~ ¢ model extended to variable density. We employ
the following to model the Reynolds stresses:

U = rzg_g %7_‘,_617 _.2_-k
P He " ax  3\ox  ror 3P
— [ oV 2(sU0 &V 2
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Note that the mass-weightéd mean velocity gradients are used
in modeling the Reynolds stresses even though the un-
weighted mean strain rates appear in the momentum equa-
tions. This is simply a modeling decision.
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The kinematic turbulent viscosity ‘u, is modeled as u, =
pC, k% e. Mass averaging is also applied to the turbulent ki-
netic energy:

k = (puiuilp) (24)

The transport equations for k and ¢, extended for variable
density, are
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In view of the fact that the present coflowing streams are
far from walls, the contributions due to terms involving mo-
lecular viscosity and gradients of u” are neglected. Hence, the
diffusion terms in the momentum equations are modeled to
involve only the mass-weighted mean strain rates.
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Computing Details

The describing equations are solved using a steady, implicit
finite volume code based on the staggered mesh SIMPLE
algorithm of Patankar and Spalding.”” The code belongs to
the TEACH family?® of finite volume codes. The iterative
procedure of SIMPLE is executed until totaled mass and mo-
mentum residuals are each less than 1.0 X 10~3%. The grid
used for free-slip, constant density calculations is 60 X 52
cells, while that for the no-slip cases is 66 X 81. The same
finer grid used for the constant density case is used for the
variable density case. The cells expand in length in the axial
direction and radially beyond the inner tube location toward
the outer radius. The cross-sectional area of the cylindrical
computational domain is configured to have the same pe-
rimetral length as the square-sectioned test section of the
experimental apparatus of Zawacki and Weinstein.! The mesh
is especially fine near the inner and outer walls of the inner
tube. The HYBRID scheme (upwinding for cell Reynolds
number Re, > 2, centered differencing for Re, < 2) is used
in the calculations. Typical run time for a simulation is 250 s
on the INEL CRAY XMP/216.

Validation computations were made to compare k ~ ¢ re-
sults for the same constant density plane mixing layer com-
puted by Launder et al.?? Computed profiles of mean velocity
and shear stress (not shown) were found to be very close to
the calculations of Launder et al.'?

Results and Discussion

Constant Density Case

Experimental data are provided by Zawacki and Weinstein®
for several different ratios of outer to inner bulk mean veloc-
ities for the axisymmetric coaxial stream problem. While the

same velocity is used for the outer stream in all cases, the
bulk velocity of the inner stream is varied to obtain the differ-
ent velocity ratios. Of these several experiments, only two in-
volve inner streams that are fully turbulent: U,/U; = 1.0 and
3.4; we choose the latter for the present study. For this ratio,
the Reynolds number of the inner stream is Re = 2r,U,/v
~ 5000.

The experimental data for the radial variation of the mean
streamwise velocity are given in Zawacki and Weinstein® for
several axial stations along the axisymmetric mixing layer.
Unfortunately, the inlet data are incomplete because only
mean velocities are given. As mentioned earlier, the inlet data
for the turbulence quantities are obtained from simulations
made earlier for pipe and annular flows. Figure 2 presents
results for the k ~ ¢ model, using a free-slip outer boundary,
plotted against the data for the radial variation of mean
streamwise velocity for various axial locations. The mean ve-
locity is normalized by the bulk mean outer velocity U, =
14.6304 m/s (48 ft/s) and the axial location is nondimension-
alized using the inner radius of the inner tube r, = 9.1821
mm (0.3615 in.). The prediction curves, though not labeled
to avoid clutter, sequentially follow the data as x/r; increases.

As shown in Fig. 2, the inlet data for the mean velocity are
quite well predicted. The acceleration of the centerline ve-
locity is somewhat underpredicted, but not more than by about
8% . This is quite reasonable as it can be expected that ex-
perimental uncertainty may reach 15%. The radial profiles at
the various locations are also underpredicted, the largest dis-
crepancy being about 13%.

Because the data are virtually all underpredicted beyond
the inlet plane, it may be surmised that the overall mass flow
rate is off. The growing boundary layer at the outer radial
boundary would tend to accelerate the interior fluid which
could account for some of the discrepancy. To estimate this
effect, the cylindrical domain is extended to aradius such that
the perimeter matches that of the square experimental work-
ing section. Hence, the growing outer boundary layer causes
about the same mass flow deficit as occurred in the experi-
ment. The difference between the mass deficit caused by the
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Fig. 2 Radial variation of mean axial velocity for several axial sta-
tions, constant density case; —— &k ~ & results (free-slip); symbols,
data of Ref. 1.
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actual square apparatus in the outer developing boundary
layer and the assumed circular computational domain is ex-
pected to yield at most a second-order effect, but probably a
third-order effect. This effect would be the slight extra deficit
caused by mutual interference of the boundary layers in the
corners. A no-slip condition is used to allow the boundary-
layer growth. Figure 3 illustrates results for the mixing layer
while accounting for the outer boundary-layer growth. It should
be noted that the radial mesh spacing has been refined by an
additional 50%. The results shown in Fig. 3 indicate that some
of the discrepancy of Fig. 2 is indeed the result of an accel-
eration of the interior flow due to a growing boundary layer.
The bulk of this effect is assumed to be accounted for accu-
rately as the outer boundary layer is predicted to grow from
about 6.5 mm (4 in.) to about 19 mm (3 in.), the same values
reported by Zawacki and Weinstein.! The maximum un-
derprediction for Fig. 3, however, is still 15.5%. The above
radial refinement of the grid as well as additional runs where
the axial grid spacing was refined by a factor of three indicate
that the results for the finer 66 X 81 grid are virtually grid
independent.

Predictions for the thin shear ASM are given in Fig. 4. The
finer grid, used for the results of Fig. 3, is used again. Inlet
conditions are provided from thin shear ASM calculations of
pipe and annular flows. The mean streamwise centerline ve-
locity accelerates faster for the ASM than for the k£ ~ £ model.
However, the underprediction of the mean velocity in the
developing mixing layer is somewhat greater for the ASM
than for k ~ £. One has to conclude that the standard &k ~ ¢
results are better than those for the ASM because the former
are quantitatively closer to the data for the earlier stations
(x/r, = 5.6, 8.4, and 11.2) (being qualitatively similar) and
are qualitatively better for the outer stations. (Although the
ASM results are closer to the data for x/r, = 22.8, they indicate
a shallower aU/or than are shown by either the data or the &
~ e results.)

The behavior of the ASM can be explained in part by com-
paring the two forms for the turbulent shear stress, Eqs. (4)
and (11). While both formulas have an explicit dependence
on the factor k%/¢, the ASM formula also contains an explicit
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dependence on the factor P/e. When the production is high,
as it is for low x/r,, the net effect is for the “turbulent viscosity”
(the coefficient of aU/dr) to diminish, thereby reducing the
mixing effect. For the far downstream region, however, where
production of turbulent kinetic energy has decreased sub-
stantially, the net effect of the factor P/¢ is to increase the
viscosity, enhancing the turbulent mixing and promoting the
development of the core region. Unfortunately, these effects,
which are due to the nature of the ASM, are shown to be
undesirable for the present flow.

Figure 5 compares predictions for the turbulent shear stress
for the two models with the data for x/r, = 8.4. The calcu-
lations show magnitudes of roughly a factor of two greater
than the data! This might lead one to conclude that the tur-
bulent mixing rate is drastically overpredicted. However, ad-
ditional computations have been made for the k£ ~ & model
beginning at x/r, = 8.4 where shear stress data are reported
(the same approach used by Zelazny et al.?). The results for
the mean streamwise velocities and shear stresses are plotted
in Figs. 6 and 7. While the values calculated for the shear
stresses are clearly much closer to the reported data than those
of Fig. 5, the results for the mean velocities are clearly poorer
as the centerline velocity is more slowly accelerated than in-
dicated for the k ~ ¢ results (Fig. 2). Of course, the mean
velocities depend on the gradients of shear stress, not its
magnitude. Inspection of the shear stress predictions in Fig.
5 shows that their radial gradients are steeper than those of
the data. However, we can consider the findings of other
workers* who, as mentioned earlier, concluded that their mean
data taken with a hot wire erred on the high side while their
rms data were low compared to reality. (The present calcu-
lations show discrepancies vs the data in the same directions.)
Furthermore, the reported discrepancies* of the order of 10
and 17% between LDA and hot-wire data for mean and rms
data, respectively, give some indication of the experimental
uncertainty. Maximum discrepancies between the data and
the calculations of the mean velocity shown in Figs. 2 and 3
are 13.4 and 15.5%, respectively. A further observation is
that the & ~ ¢ model provides more than enough mixing,
indicating that either countergradient diffusive transport, seen
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in related flows,® is small for this flow or the gradient transport
provided by the model is sufficient. Indeed, it may be stated
that although the k ~ ¢ model clearly overpredicts the mag-
nitudes of the turbulent shear stresses, though not by as much
as shown in Fig. 5 given the large experimental uncertainty,
and although the model may not account for countergradient
diffusion, its overall performance does produce good quali-
tative results which are useful to the engineer, and in this case
fairly close to reported data for the mean field.
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In view of the above, we conclude that the £ ~ ¢ model
turns in a fairly satisfactory performance for the constant
density case, and proceed to extend and use it for a similar
variable density flow.

Variable Density Case

Zawacki and Weinstein! also provide data for the case of
a denser inner stream (Freon 12) flowing into an annular
stream of air. They indicate that the density ratio of Freon
12 to air is p;/p, = 4/1, although a ratio of 4.26 to one would
be computed based on properties at one atmosphere and 300
K. We use the reported 4:1 ratio. The outer to inner mean
velocity ratio used for the variable density case is 3.6 as shown
in Fig. 1.

Inlet plane conditions are obtained the same way as for the
constant density case, except that fully developed pipe flow
of Freon 12 is used for the inner stream. Figure 8 shows the
results of the extended k£ ~ & model for the radial variation
of the mean streamwise velocity for several axial stations com-
pared with the data. The predictions, however, are for the
mass-weighted mean velocity. The data were taken using a
hot-wire anemometer, which is sensitive to variations in the
wire Reynolds number, and hence the density, and it is not
clear from the report if the data are really unweighted or
effectively mass weighted. Because the agreement is as good
as for the constant density case, we conclude that either the
data are mass weighted or the difference is small. In either
case, the results exhibit the same trend as for the constant
density case; that is, the rate of mixing is overpredicted. How-
ever, we can say again that the results are fairly satisfactory
for the prediction of the mean streamwise velocity.

The concentration profiles are reported in dimensionless
form.! The local mean density is nondimensionalized accord-
ing to (p — p,)(p; — p;) where p, is the mean density of
the entering outer stream (air) and p; is the mean density of
the entering inner stream. Figure 9 shows the simulations for
the radial variation of the dimensionless local mean density
compared to the data at several axial stations. We see that
the agreement is good, well within experimental uncertainty.
We conclude that the extended k ~ ¢ turbulence model per-
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forms fairly satisfactorily for the variable density case using
0.9 for the turbulent Schmidt number and that the gradient
diffusion approach of the model is suitable.

Further testing of the k ~ ¢ model is required, however,
for the mixing of fluids of much higher density ratios and at
much higher temperatures to be able to assess its value for
use as a modeling tool in connection with the gas core reactor.
However, it would be desirable to obtain new data for the
turbulent axisymmetric mixing layer, documenting completely

the initial mixing plane and carefully reducing the data to
obtain unambiguously either mass-weighted or unweighted
velocities and the difference.

Conclusions

Numerical simulations are obtained for each of two tur-
bulence models (k ~ ¢ and a thin shear ASM) for incom-
pressible, constant density, stationary, turbulent, coaxial
streams and for a similar variable density flow using an ex-
tended k ~ £ model. The conclusions of the present study
are the following: 1) the k ~ & model velocity simulations are
qualitatively satisfactory for the constant density case and for
the variable density case, although excessive radial diffusion
of axial momentum is predicted; 2) the thin shear ASM sim-
ulations are generally inferior to the k ~ & predictions for the
constant density case; 3) the k ~ & predictions of mass trans-
port in the variable density case show good agreement; 4) a
significant portion of the errors in the predictions is likely due
to inaccurate inlet conditions as the experimental inlet data
are incomplete; 5) the experimental uncertainty of the data
is fairly significant; 6) additional data where initial mixing
plane information is completely documented are desirable;
and 7) the k ~ ¢ turbulence model appears suitable for use
as a design tool for fluid machinery involving coaxial flows,
at least to determine qualitative aspects of such flows.
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